VIABILITY AND PHYSIOLOGICAL RESPONSES OF YEASTS EXPOSED TO STRESS CONDITIONS OCCURING IN WEST AFRICAN FERMENTED CEREAL DOUGHS

Pernille Johansen

PhD student

Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.

Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin.

UNIVERSITY OF COPENHAGEN

UNIVERSITY OF COPENHAGEN

Background

- African fermented doughs constitutes a important part of daily food intake
- Fermentation lasts from 24-48h, depending on the rate of acidification and the preference of the producer
- Elucidation of the viability and stress resistance responses of yeasts toward conditions mimicking those in cereal doughs can impact the design strategies for improved quality and safety of the doughs

AIM: Get an understanding of how the stress factors in fermented cereal doughs influence the growth and survival of the predominant yeast species (*Saccharomyces* and non-*Saccharomyces*) and to investigate differences in sensitivity at species and strain levels

DEPARTMENT OF FOOD SCIENCE

West African fermented cereal dough

DEPARTMENT OF FOOD SCIENCE

The twelve yeast isolates included

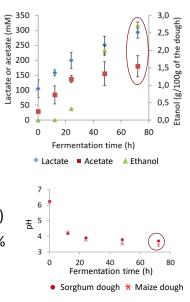
	Contents lists available at ScienceDirect	Food Microbiol
	Food Microbiology	- 32
ELSEVIER	journal homepage: www.elsevier.com/locate/fm	

Occurrence of lactic acid bacteria and yeasts at species and strain level during spontaneous fermentation of mawè, a cereal dough produced in West Africa

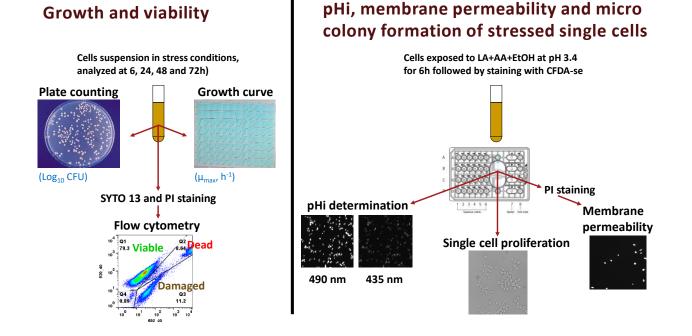
Marcel Houngbédji^{0,1}, Pernille Johansen^{b,1}, Sègla Wilfrid Padonou^a, Noël Akissoé^a, Nils Arneborg^b, Dennis S. Nielsen^b, D. Joseph Hounhouigan^a, Lene Jespersen^{b,*}

Isolate	Identity	Isolate source (cereal dough and fermentation duration)		NCBI GenBank accession no	
Sc1	Saccharomyces cerevisiae	Undehulled maize mawè	36h	MG245859	
Sc2	Saccharomyces cerevisiae	Commercial maize mawè	onset	MG245839	
Sc3	Saccharomyces cerevisiae	Undehulled maize mawè,	36h	MG245858	
Cg1	Candida glabrata	Commercial maize mawè	6h	MG245841	
Cg2	Candida glabrata	Commercial maize mawè	onset	Submission in progress	
Cg3	Candida glabrata	Commercial maize mawè	24h	MG245821	
Km1	Kluyveromyces marxianus	Commercial maize mawè	onset	MG245826	
Km2	Kluyveromyces marxianus	Commercial sorghum mawè	6h	MG245824	
Km3	Kluyveromyces marxianus	Homemade maize mawè	onset	MG245846	
Pk1	Pichia kudriavzevii	Homemade maize mawè	onset	MG245834	
Pk2	Pichia kudriavzevii	Commercial sorghum mawè	6h	MG245830	
Pk3	Pichia kudriavzevii	Homemade maize mawè	12h	MG245831	

UNIVERSITY OF COPENHAGEN


Experiment conditions

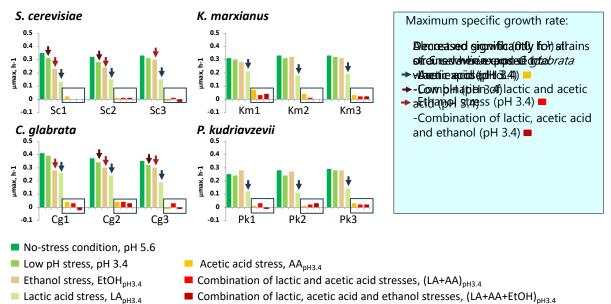
Performed in malt, yeast extract, glucose, peptone (MYGP)


- 1. No stress (pH 5.6)
- 2. Low pH stress (pH 3.4)
- 3. Ethanol stress (EtOH) (with 3% (v/v) EtOH, pH 3.4)
- 4. Lactic acid stress (LA) (with 285 mM LA, pH 3.4)
- 5. Acetic acid stress (AA) (with 150 mM AA, pH 3.4)
- 6. LA + AA stress (with 285 mM LA and 150 mM AA, pH 3.4)
- 7. LA + AA + EtOH stress (with 285 mM LA, 150 mM AA, 3% (v/v) EtOH, pH 3.4)

DEPARTMENT OF FOOD SCIENCE

DOUGH CONDITIONS

DEPARTMENT OF FOOD SCIENCE

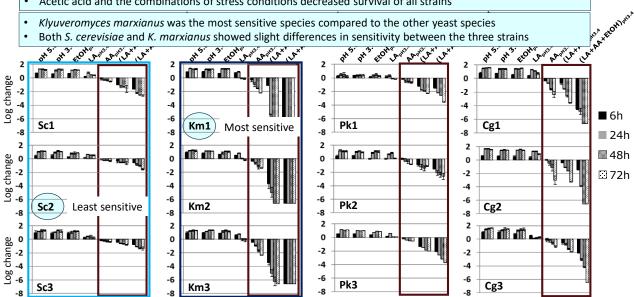


📍 UNIVERSITY OF COPENHAGEN

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF FOOD SCIENCE

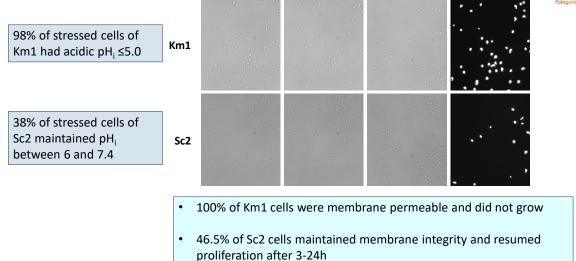
Maximum specific growth rate (μ_{max} , h^{-1})



Survival in the various stress conditions assesed by plate counting

Acetic acid and the combinations of stress conditions decreased survival of all strains

Klyuveromyces marxianus was the most sensitive species compared to the other yeast species Both S. cerevisiae and K. marxianus showed slight differences in sensitivity between the three strains


📍 UNIVERSITY OF COPENHAGEN

DEPARTMENT OF FOOD SCIENCE

Ability of yeast cells to recover from the stress damages determined by fluorescent microscopy

0h

12h

24h

4

Conclusions and perspectives

- The combined approach of flow cytometry and fluorescent microscopy provided qualitative and quantitative information in near real time on the sensitivity between and within species and strains
- The sensitivity of examined yeasts was species, strain and cell dependent
- *S. cerevisiae* strains were less sensitive followed by *P. kudriavzevii*, while *C. glabrata* and *K. marxianus* were more sensitive
- pHi and plasma membrane integrity were found to be inter-related physiological parameters, which together determine yeast cell sensitivity, viability and culturability
- There is the need for optimizing the fermentation process in order to change the environment of fermented dough in favor of *K. marxianus* strains as well as other less resistant *S. cerevisiae* strains

📍 UNIVERSITY OF COPENHAGEN

Acknowledgements

Marcel Houngbedji PhD student, UAC Benin

Dr. S. W. Padonou UAC, Benin

D. J. Hounhouigan Professor UAC, Benin

Henrik Siegumfeldt Associate Professor, UCPH Denmark

Lene Jespersen Professor, UCPH Denmark

The authors would like to acknowledge the Consultative Committee for Development Research and Danida for funding through the project *Preserving African food microorganisms for Green Growth* (project number DFC No. 13-04KU).

DEPARTMENT OF FOOD SCIENCE

DEPARTMENT OF FOOD SCIENCE