

VIABILITY AND PHYSIOLOGICAL RESPONSES OF YEASTS EXPOSED TO STRESS CONDITIONS OF WEST AFRICAN FERMENTED CEREAL DOUGHS

Marcel Houngbédji

PhD student houngbedjimarcel@gmail.com

Objectives

To get an understanding of how various stress factors in fermented cereal doughs influence the growth and survival of the predominant yeast species and to discover differences in sensitivity at species and strain levels

Cereal dough fermentation in West Africa

Stress factors of fermented cereal doughs

Six stress conditions and one non-stress condition were defined

Abbreviation	Definition	Preparation
pH 5.6	Non-stress condition	MYGP medium, pH 5.6
рН 3.4	Low pH stress	MYGP medium, pH 3.4
EtOH _{pH3.4}	Ethanol stress	MYGP medium with ethanol 3% (v/v), pH $_{3,4}$
LA _{pH3.4}	Lactic acid stress	MYGP medium with 285 mM lactic acid, pH 3.4
AA _{pH3.4}	Acetic acid stress	MYGP medium with 150 mM acetic acid, pH 3.4
(LA+AA) _{pH3.4}	Combination of lactic and acetic acid stresses	MYGP medium with 285 mM lactic acid and 150 mM acetic acid, pH 3.4
(LA+AA+EtOH) _{pH3.4}	Combination of lactic, acetic acid and ethanol stresses	MYGP medium with 285 mM lactic acid, 150 mM acetic acid and ethanol 3% (v/v), pH 3.4

Twelve yeast strains were tested

Food Microbiology 76 (2018) 267-278

	Contents lists available at ScienceDirect	Food Microbiology
3-52-52	Food Microbiology	- 57-3
ELSEVIER	journal homepage: www.elsevier.com/locate/fm	· · ·

Occurrence of lactic acid bacteria and yeasts at species and strain level during spontaneous fermentation of mawe, a cereal dough produced in West Africa

Marcel Houngbédji^{a,1}, Pernille Johansen^{b,1}, Sègla Wilfrid Padonou^a, Noël Akissoé^a, Nils Arneborg^b, Dennis S. Nielsen^b, D. Joseph Hounhouigan^a, Lene Jespersen^{b,*}

Isolate	Identity	Isolate source (cereal dough and		NCBI GenBank accession
		fermentation duration)		no
Sc1	Saccharomyces cerevisiae	Undehulled maize mawè	36h	MG245859
Sc2	Saccharomyces cerevisiae	Commercial maize mawè	onset	MG245839
Sc3	Saccharomyces cerevisiae	Undehulled maize mawè,	36h	MG245858
Cg1	Candida glabrata	Commercial maize mawè	6h	MG245841
Cg2	Candida glabrata	Commercial maize mawè	onset	Submission in progress
Cg3	Candida glabrata	Commercial maize mawè	24h	MG245821
Km1	Kluyveromyces marxianus	Commercial maize mawè	onset	MG245826
Km2	Kluyveromyces marxianus	Commercial sorghum mawè	6h	MG245824
Km3	Kluyveromyces marxianus	Homemade maize mawè	onset	MG245846
Pk1	Pichia kudriavzevii	Homemade maize mawè	onset	MG245834
Pk2	Pichia kudriavzevii	Commercial sorghum mawè	6h	MG245830
Pk3	Pichia kudriavzevii	Homemade maize mawè	12h	MG245831

Growth and viability assessment

pH_{μ} membrane permeability and micro colony formation of stressed single cells with fluorescent microscopy

Maximum specific growth rate ($\mu_{max'}$ h⁻¹)

Viability as determined by flow cytometry

Viability as determined by plate counting

Viability as determined by plate counting

Micro colony formation and membrane permeability of stressed single cell

100% of Km1 cells were membrane permeable and did not grow

46.5 % of Sc2 cells maintained membrane integrity and resumed proliferation after 3 -24h

Intracellular pH and lag phase of stressed single cells transfered in non-stress condition

Take home messages

The most important stressful factors in West African fermented cereal doughs are lactic acid, acetic acid and ethanol

Acetic acid is the most stressful factor and the combination with lactic acid and and ethanol is even more toxic to yeast cells

S. Cerevisiae strains were the less sensitive following by *P. kudriavzevii*, while *C. glabrata* and *K. marxianus* were more sensitive

38% of resistant cells of S. cerevisiae could maintain pH_i to phisiological range and could also maintain plasma membrane integrity

Contributors

Prof. D. J. Hounhouigan Supervisor UAC, Benin

Dr. S. W. Padonou UAC, Benin

Prof. L. Jespersen Supervisor KU, Denmark

Prof. H. Siegumfeldt KU, Denmark

Msc. P. Johansen KU, Denmark

Acknowledgements

Danida Fellowship Centre

The authors would like to acknowledge the Consultative Committee for Development Research and Danida for funding through the project *Preserving African food microorganisms for Green Growth* (project number DFC No. 13-04KU).

ICFMH for granting with a FoodMicro Travel Grant that gave opportunity to present this work at FoodMicro conference 2018